
Visualisierung mit Python

Veranstaltung:
Prozedurale Programmierung / Einführung in
die Informatik / Erhebung, Analyse und
Visualisierung digitaler Daten

Semester Wintersemester 2025/26

Hochschule: Technische Universität Freiberg

Inhalte: Visualisierung mit Python

Link auf Repository:
https://github.com/TUBAF-IfI-
LiaScript/VL_EAVD/blob/master/09_Datenvisualisierung.md

Autoren Sebastian Zug & André Dietrich & Galina Rudolf & Bernhard Jung

Fragen an die heutige Veranstaltung ...

Datenvisualisierung

Welche Grundkonzepte stehen hinter der Programmierung von Grafiken?

Wie geht man bei der Erschließung von unbekannten Methoden sinnvoll vor?





Parameter Kursinformationen

https://github.com/TUBAF-IfI-LiaScript/VL_EAVD/blob/master/09_Datenvisualisierung.md
https://github.com/TUBAF-IfI-LiaScript/VL_EAVD/blob/master/09_Datenvisualisierung.md
https://github.com/TUBAF-IfI-LiaScript/VL_EAVD/blob/master/09_Datenvisualisierung.md
https://github.com/TUBAF-IfI-LiaScript/VL_EAVD/blob/master/09_Datenvisualisierung.md

In einem vorigen Termin haben wir Ihre Zugehörigkeit zu verschiedenen Studiengängen eingelesen und
analysiert Link L08.

Auf die Frage hin, welche Häufigkeiten dabei auftraten, beantwortete unser Skript mit einem Dictonary:

Die textbasierte Ausgabe ist nur gering geeignet, um einen raschen Überblick zu erlangen. Entsprechend
suchen wir nach einer grafischen Ausgabemöglichkeit für unsere Python Skripte.

Python Visualisierungstools
Python stellt eine Vielzahl von Paketen für die Visualisierung von Dateninhalten bereit. Diese zielen auf
unterschiedliche Visionen oder Features:

{'S-UWE': 1, 'S-WIW': 18, 'S-GÖ': 9, 'S-VT': 2, 'S-BAF': 3, 'S-WWT': 8, 'S-
 ,
 'S-ET': 3, 'S-MB': 1, 'S-FWK': 3, 'F1-INF': 2, 'S-BWL': 2, 'S-MAG': 4, 'F2
 : 3,
 'S-ACW': 4, 'S-GTB': 4, 'S-GBG': 5, 'S-GM': 2, 'S-ERW': 1, 'S-INA': 1, 'S-
 1,
 'S-CH': 1}

0

3

6

9

12

15

18

'S-UWE' 'S-VT' 'S-NT' 'S-FWK' 'S-MAG' 'S-GTB' 'S-ERW' 'S

Anzahl

Teilnehmende Studierende pro Studiengang

einfache Verwendbarkeit

große Bandbreite von Diagrammarten und Adaptionsmöglichkeiten

interaktive Diagramme

Vielzahl von Exportschnittstellen











https://liascript.github.io/course/?https://raw.githubusercontent.com/TUBAF-IfI-LiaScript/VL_ProzeduraleProgrammierung/master/08_PythonVertiefung.md#6

plotly Link
Fokus auf interaktive Diagramme eingebettetet in
Webseiten

seaborn Link Leistungsfähige Darstellung von statistischen Daten

matplotlib Link

...

Matplotlib Grundlagen

Beispiel.py

import matplotlib.pyplot as plt

a = [5,6,7,9,12]
b =[x**2 for x in a] # List Comprehension
plt.plot(a, b)

#plt.show()
plt.savefig('foo.png') # notwendig für die Ausgabe in LiaScript

Package Link Besonderheiten

1
2
3
4
5
6
7
8



https://plotly.com/
https://seaborn.pydata.org/
https://matplotlib.org/

 foo.png

 foo.png

Linientyp der
Datendarstellung

pyplot.plot plt.plot(a, b, 'ro:')

Achsenlabel hinzufügen pyplot.xlabel
plt.xlabel('my data',
fontsize=14, color='red')

Titel einfügen pyplot.title plt.title(r'$\sigma_i=15$')

Gitter einfügen pyplot.grid plt.grid()

Legende pyplot.legend
plt.plot(a, b, 'ro:',
label="Data")

plt.legend()

Speichern
pyplot.savefi
g

plt.savefig('foo.png')

Anpassung API

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.xlabel.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.title.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.grid.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html

Tutorial von Rizky Maulana Nurhidayat auf medium

Weiter Tutorials sind zum Beispiel unter

Matplotlib Beispiele

Ansehen auf

Video auf YouTube ansehen

Fehler 153

Fehler bei der Konfiguration des Videoplayers

https://towardsdatascience.com/visualizations-with-matplotlib-part-1-c9651008b6b8
https://www.youtube-nocookie.com/embed/UO98lJQ3QGI
https://www.youtube-nocookie.com/embed/UO98lJQ3QGI
https://www.youtube-nocookie.com/embed/UO98lJQ3QGI
https://www.youtube-nocookie.com/embed/UO98lJQ3QGI
https://www.youtube.com/watch?v=UO98lJQ3QGI
https://www.youtube.com/watch?v=UO98lJQ3QGI&source_ve_path=MTc4NDI0
https://www.youtube.com/

LinearRegression.py

import numpy as np
import matplotlib.pyplot as plt

N = 21
x = np.linspace(0, 10, 11) # [0., 1., 2., 3., ..., 10.0]
y = [3.9, 4.4, 10.8, 10.3, 11.2, 13.1, 14.1, 9.9, 13.9, 15.1, 12.5]

fit a linear curve an estimate its y-values and their error.
a, b = np.polyfit(x, y, deg=1)
y_est = a * x + b
y_err = x.std() * np.sqrt(1/len(x) +
 (x - x.mean())**2 / np.sum((x - x.mean())**

fig, ax = plt.subplots()
ax.plot(x, y_est, '-') # plot the fitted (regression) line
ax.fill_between(x, y_est - y_err, y_est + y_err, alpha=0.2)
ax.plot(x, y, 'o', color='tab:brown') # plot data points as brown c

#plt.show()
plt.savefig('foo.png') # notwendig für die Ausgabe in LiaScript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20



 foo.png

 foo.png

MultipleDiagrams.py

import numpy as np
import matplotlib.pyplot as plt

def f(t):
 return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 5.0, 0.1) # [0, 0.1, 0.2, ..., 4.9]
t2 = np.arange(0.0, 5.0, 0.02) # [0. , 0.02, 0.04, 0.06, ..., 4.98]

plt.figure()
plt.subplot(2, 1, 1) # 2 Zeilen, 1 Spalte: erstes Diagramm
plt.subplot(211) # geht auch, falls Anzahl der Zeilen/Spalten <= 9
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')
'bo': blaue Kreise, 'k': schwarze Linie

plt.subplot(212) # 2 Zeilen, 1 Spalte: zweites Diagramm
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
#plt.show()
plt.savefig('foo.png') # notwendig für die Ausgabe in LiaScript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19



 foo.png

 foo.png

barchart.py

import numpy as np
import matplotlib.pyplot as plt

data ={'S-UWE': 1, 'S-WIW': 18, 'S-GÖ': 9, 'S-VT': 2, 'S-BAF': 3, 'S-
 8,
 'S-NT': 4, 'S-ET': 3, 'S-MB': 1, 'S-FWK': 3, 'F1-INF': 2, 'S-BWL': 2
 'S-MAG': 4, 'F2-ANCH': 3, 'S-ACW': 4, 'S-GTB': 4, 'S-GBG': 5, 'S-GM'
 'S-ERW': 1, 'S-INA': 1, 'S-MORE': 1, 'S-CH': 1}

labels = list(data.keys())
values = list(data.values())

fig, ax = plt.subplots()
ax.bar(labels, values, color='teal')
ax.set_ylabel('Anzahl der Studierenden')
ax.set_title('Verteilung der Studierenden auf die Studiengänge')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
#plt.show()
plt.savefig('foo.png') # notwendig für die Ausgabe in LiaScript

1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19



 foo.png

 foo.png

Beispiel der Woche

BeispielFourierTransformation.py

import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, fftfreq

Number of sample points
N = 600

sample spacing
T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N, endpoint=False)

create a signal with two frequencies (50 Hz and 330 Hz) and some no
y = np.sin(50.0 * 2.0*np.pi*x) # 50 Hz component
y += 0.5*np.sin(330.0 * 2.0*np.pi*x) # 330 Hz component, smaller ampl
y += 0.3*np.random.normal(size=x.shape) # add some noise (optional)

compute the Fourier Transform and corresponding frequencies
yf = fft(y)
xf = fftfreq(N, T)[:N//2] # positive frequencies only

plot the original signal and its Fourier Transform
fig, axs = plt.subplots(2, 1)
axs[0].plot(x, y)
axs[0].set_title('Original Signal')
axs[0].set_xlabel('Time [s]')
axs[0].set_ylabel('Amplitude')
axs[1].plot(xf, 2.0/N * np.abs(yf[0:N//2]))
axs[1].set_title('Fourier Transform')
axs[1].set_xlabel('Frequency [Hz]')
axs[1].set_ylabel('Magnitude')
plt.grid()
plt.tight_layout()

#plt.show()
plt.savefig('foo.png')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35



 foo.png

 foo.png

Quiz

Matplotlib Grundlagen

Wodurch muss [_____] ersetzt werden, um einen Plot mit dem Jahr auf der X-Achse und der
Anzahl der Tassen Tee auf der Y-Achse zu erstellen?

import matplotlib.pyplot as plt

year = [2000, 2001, 2002, 2003, 2004]
ttg =[232, 533, 433, 410, 450] # Tassen Tee getrunken
plt.[_____]

plt.show()



