Objektorientierung in Python

Parameter

Veranstaltung:

Semester

Hochschule:

Inhalte:

Link auf Repository:

Autoren

Kursinformationen

Prozedurale Programmierung / Einflhrung 1in
die Informatik / Erhebung, Analyse und
Visualisierung digitaler Datenl

|W1ntersemester 2025/26|

|Technische Universitat Freiberg|

|Objektorientierung in Python|

https://github.com/TUBAF-Ifl-
LiaScript/VL EAVD/blob/master/09 PythonOOP.md

Sebastian Zug & André Dietrich & Galina Rudolf & Bernhard Jung

Fragen an die heutige Veranstaltung ...

® Wie lassen sich die Konzepte der OOP in Python ausdriicken?

e Welche spezifischen Einschrankungen gibt es dabei?

Objektorientierung in Python

https://github.com/TUBAF-IfI-LiaScript/VL_EAVD/blob/master/09_PythonOOP.md
https://github.com/TUBAF-IfI-LiaScript/VL_EAVD/blob/master/09_PythonOOP.md
https://github.com/TUBAF-IfI-LiaScript/VL_EAVD/blob/master/09_PythonOOP.md
https://github.com/TUBAF-IfI-LiaScript/VL_EAVD/blob/master/09_PythonOOP.md

Klassen werden verwendet, um benutzerdefinierte Datenstrukturen zu erstellen und definieren
Funktionen, sogenannte Methoden, die das Verhalten und die Aktionen identifizieren, die ein aus der
Klasse erstelltes Objekt mit seinen Daten ausfiihren kann.

Eine kurze Auffrischung lhrer Erinnerungen zur objektorientierter Programmierung in C++ ...

Comparison.cpp il
1 #include <iostream>
2 #include <cmath>
3
4 - class Rectangle {
5 private:
6 float width, height;
7 public:
8- Rectangle(float w, float h){
9 this->width = abs(w); // ensure non-negative width
10 this->height = abs(h);
11 }
12 float area() {return widthxheight;}
13~ Rectangle operator+=(Rectangle offset) {
14 float ratio = (offset.area() + this->area()) / this->area();
15 this->width = ratio * this->width;
16 return xthis;
17 }
18 };
19
20~ int main () {
21 Rectangle rect_a(3,4);
22 Rectangle rect_b(1,3);
23 std::cout << "Flache a : " << rect_a.area() << "\n";
24 std::cout << "Flache b : " << rect_b.area() << "\n";
25 rect_a += rect_b;
26 std::cout << "Summe : " << rect_a.area();
27
28 return 0;
29 1}

Fldche a : 12
Flache b : 3

Summe ¢ 15

Zeile

4-18

12

13

21-26

Bedeutung
Definition der Klasse| Rectangle | (Schablone fiir Daten, Methoden,
Operatoren)

Gekapselte Daten der Klasse, diese sind "von Aullen" nicht sichtbar
Konstruktor mit Evaluation der libergebenen Parameter

Methode uber den Daten der Klasse

Individueller Operator mit einer spezifischen Bedeutung

Generierung von Objekten mittels Konstruktoraufruf und
Parameteriibergabe, Methoden- und Operatoraufrufe

Objektorientierte Programmierung (OOP) ist ein Paradigma, das liber die Ideen der Prozeduralen

Programmierung hinaus geht. Es definiert Objekte und deren Verhalten. Dabei baut es auf 3 zentralen

Grundprinzipien auf:

1. Kapselung Objekte kapseln ihre Daten, Operatoren, Methoden usw. sofern diese nicht als "6ffentlich"

deklariert sind.

Was intern passiert bleibt intern!

2. Vererbung Objekte konnen "Fahigkeiten" an andere, speziellere Objekte weitergeben.

Von wem hat er das denn woh!?

3. Polymorphismus Objekte werden durch Kapselung und Vererbung austauschbar!

Was bist denn Du flir einer?

Vorteile der objektorientierten Programmierung

® hohere Wartbarkeit durch Abstraktion

® Wiederverwendbarkeit von Code (bessere Wiederverwendbarkeit je kleiner und allgemeiner die

Objekte gehalten sind)

e schlanker und tibersichtlicher Code durch Vererbung

Warum also nicht immer objektorientiert entwickeln?

OOP verfiihrt ggf. dazu, das eigentliche Problem durch einen aufwandigen Entwurf unnétig zu
verkomplizieren. Dabei ist die Entwicklung der Gesamtstruktur eines komplexen Softwareprojektes aus n
Objekten eine Kunst und braucht viel Ubung! Erst, wenn man entsprechende Regeln kennt und sinnvoll
anwendet, zeigen sich die Vorteile des Paradigmas.

... und in Python?

In Python ist alles ein Objekt!

... z.B. auch Integer und Floats, die in C++ und vielen anderen Programmiersprachen keine Objekte sind

import dinspect

i=5

- if name == '__builtins__"':
continue

1

2

3

4

5+ for name, data in inspect.getmembers(i):
6

7

8 print(f'{name} - {repr(data)}')

_abs__ - <method-wrapper '__abs_ of int object at 0x7e54c5cacl70>
_add__ - <method-wrapper '__add__' of int object at Ox7e54c5cacl70>
_and__ - <method-wrapper '__and__' of int object at 0x7e54c5cacl70>
__bool__ - <method-wrapper '__bool__' of int object at 0x7e54c5cacl70>
__ceil__ - <built-in method __ceil__ of int object at 0x7e54c5cacl70>
__class__ - <class 'int'>

__delattr__ - <method-wrapper '__delattr__' of int object at
Ox7e54c5cacl70>

__dir__ - <built-in method __dir__ of int object at Ox7e54c5cacl70>

__divmod__ - <method-wrapper '__divmod__' of int object at
Ox7e54c5cacl70>

_ - "int([x]) -> integer\nint(x, base=10) -> integer\n\nConvert a
number or string to an integer, or return 0 if no arguments\nare given.
If x is a number, return x.__int__(). For floating point\nnumbers,
this truncates towards zero.\n\nIf x is not a number or if base is
given, then x must be a string,\nbytes, or bytearray instance
representing an integer literal in the\ngiven base. The literal can be
preceded by '+' or '-' and be surrounded\nby whitespace. The base
defaults to 10. Valid bases are 0 and 2-36.\nBase 0 means to interpret
the base from the string as an integer literal.\n>>> int('Gbl0o0"',
base=0)\n4"
__eq__ - <method-wrapper '__eq__"' of 1int object at 0x7e54c5cacl70>
__float__ - <method-wrapper '__float__' of int object at
Ox7e54c5cacl70>
__floor__ - <built-in method __floor__ of 1int object at 0x7e54c5cacl70>
__floordiv__ - <method-wrapper '__floordiv__' of int object at
Ox7e54c5cacl70>
__format__ - <built-in method __format__ of int object at
Ox7e54c5cacl70>

__ge__ - <method-wrapper '__ge__' of int object at 0x7e54c5cacl70>

__getattribute__ - <method-wrapper '__getattribute__' of int object at
Ox7e54c5cacl70>

__getnewargs__ - <built-in method __getnewargs
Ox7e54c5cacl70>

__gt__ - <method-wrapper '__gt__' of int object at 0x7e54c5cacl70>
__hash__ - <method-wrapper '__hash__' of int object at 0x7e54c5cacl70>

of int object at

__index__ - <method-wrapper '__index__' of int object at
Ox7e54c5cacl70>

__init__ - <method-wrapper '__init__' of int object at 0Ox7e54c5cacl70>
__init_subclass__ - <built-in method __init_subclass__ of type object
at 0x5cal5f654320>

__int__ - <method-wrapper '__int__' of 1int object at 0x7e54c5cacl70>
__invert__ - <method-wrapper '__invert__' of int object at

Ox7e54c5cacl70>
__le__ - <method-wrapper '__le__"' of 1int object at 0x7e54c5cacl70>
__Llshift__ - <method-wrapper '__1lshift__' of int object at
Ox7e54c5cacl70>

_ - <method-wrapper '__1t__' of int object at 0x7e54c5cacl70>

_ — <method-wrapper '__mod__' of int object at 0x7e54c5cacl70>

_ - <method-wrapper '__mul__' of 1int object at 0x7e54c5cacl70>

_ - <method-wrapper '__ne__' of int object at 0x7e54c5cacl70>
__neg__ - <method-wrapper '__neg__' of 1int object at 0x7e54c5cacl70>
__new__ - <built-in method __new__ of type object at 0x5cal5f654320>
__or__ - <method-wrapper '__or__"' of int object at 0x7e54c5cacl70>
__pos__ - <method-wrapper '__pos__' of 1int object at 0x7e54c5cacl70>
__pow__ - <method-wrapper '__pow__' of 1int object at 0x7e54c5cacl70>
__radd__ - <method-wrapper '__radd__' of int object at Ox7e54c5cacl70>
__rand__ - <method-wrapper '__rand__' of int object at 0x7e54c5cacl70>
__rdivmod__ - <method-wrapper '__rdivmod__' of 1int object at
Ox7e54c5cacl70>
__reduce__ - <built-in method __reduce__ of int object at
Ox7e54c5cacl70>
__reduce_ex__ - <built-in method __reduce_ex__ of 1int object at
Ox7e54c5cacl70>
__repr__ - <method-wrapper '__repr__"' of int object at 0Ox7e54c5cacl70>
__rfloordiv__ - <method-wrapper '__rfloordiv__' of int object at
Ox7e54c5cacl70>
__rlshift__ - <method-wrapper '__rlshift__' of int object at
Ox7e54c5cacl70>
__rmod__ - <method-wrapper '__rmod__' of int object at Ox7e54c5cacl70>
__rmul__ - <method-wrapper '__rmul__' of int object at 0Ox7e54c5cacl70>
__ror__ - <method-wrapper '__ror__"' of 1int object at 0x7e54c5cacl70>
__round__ - <built-in method __round__ of int object at 0x7e54c5cacl70>
__rpow__ - <method-wrapper '__rpow__' of int object at Ox7e54c5cacl70>
__rrshift__ - <method-wrapper '__rrshift__' of int object at
Ox7e54c5cacl70>
__rshift__ - <method-wrapper '__rshift__' of int object at
Ox7e54c5cacl70>
__rsub__ - <method-wrapper '__rsub__' of int object at 0x7e54c5cacl70>
__rtruediv__ - <method-wrapper '__rtruediv__' of int object at
Ox7e54c5cacl70>
__rxor__ - <method-wrapper '__rxor__"' of int object at 0Ox7e54c5cacl70>
__setattr__ - <method-wrapper '__setattr__' of int object at
Ox7e54c5cacl70>
__sizeof__ - <built-1in method
Ox7e54c5cacl70>

_sizeof__ of 1int object at

__str__ - <method-wrapper '__str__' of 1int object at 0x7e54c5cacl70>
__sub__ - <method-wrapper '__sub__' of 1int object at 0x7e54c5cacl70>
__subclasshook__ - <built-in method __subclasshook__ of type object at
Ox5cal5f654320>
__truediv__ - <method-wrapper '__truediv__' of int object at
Ox7e54c5cacl70>
__trunc__ - <built-in method __trunc__ of int object at 0x7e54c5cacl70>
__xor__ - <method-wrapper '__xor__"' of 1int object at 0x7e54c5cacl70>
as_integer_ratio - <built-in method as_integer_ratio of int object at
Ox7e54c5cacl70>
bit_count - <built-in method bit_count of int object at 0x7e54c5cacl70>
bit_length - <built-in method bit_length of int object at
Ox7e54c5cacl70>
conjugate - <built-in method conjugate of 1int object at 0x7e54c5cacl70>
denominator - 1
from_bytes - <built-in method from_bytes of type object at
Ox5cal5f654320>
imag - 0
numerator - 5
real - 5
to_bytes - <built-in method to_bytes of int object at 0x7e54c5cacl70>
abs__ - <method-wrapper '__abs__' of int object at 0x780285628170>
add__ - <method-wrapper '__add__' of int object at 0x780285628170>
__and__ - <method-wrapper '__and__' of 1int object at 0x780285628170>
__bool__ - <method-wrapper '__bool__' of int object at 0x780285628170>
__ceil__ - <built-in method __ceil__ of int object at 0x780285628170>
__class__ - <class 'int'>
__delattr__ - <method-wrapper '__delattr__' of 1int object at
Ox780285628170>
__dir__ - <built-in method __dir__ of int object at 0x780285628170>
__divmod__ - <method-wrapper '__divmod__' of int object at
Ox780285628170>

_ = ™int([x]) -> dinteger\nint(x, base=10) -> 1integer\n\nConvert a

number or string to an integer, or return 0 if no arguments\nare given.
If x is a number, return x.__int__(). For floating point\nnumbers,
this truncates towards zero.\n\nIf x is not a number or if base is

given, then x must be a string,\nbytes, or bytearray instance

representing an integer literal in the\ngiven base. The literal can be
preceded by '+' or '-' and be surrounded\nby whitespace. The base
defaults to 10. Valid bases are 0 and 2-36.\nBase 0 means to -interpret
the base from the string as an integer literal.\n>>> 1int('0ble0',
base=0)\n4"

__eq__ - <method-wrapper '__eq__"' of 1int object at 0x780285628170>

__float__ - <method-wrapper '__float__' of int object at
Ox780285628170>

__floor__ - <built-in method __floor__ of int object at 0x780285628170>
__floordiv__ - <method-wrapper '__floordiv__' of int object at
OXx780285628170>

__format__ - <built-in method __format__ of int object at
Ox780285628170>

__ge__ - <method-wrapper '__ge__' of int object at 0x780285628170>
__getattribute__ - <method-wrapper '__getattribute__' of int object at
Ox780285628170>

__getnewargs__ - <built-in method __getnewargs
Ox780285628170>

__gt__ - <method-wrapper '__gt__' of int object at 0x780285628170>
__hash__ - <method-wrapper '__hash__' of int object at 0x780285628170>
__index__ - <method-wrapper '__index__' of int object at
Ox780285628170>

__init__ - <method-wrapper '__init__' of int object at Ox780285628170>

of int object at

__init_subclass__ - <built-in method __init_subclass__ of type object
at 0x5732684a7320>
__int__ - <method-wrapper '__int__' of 1int object at 0x780285628170>
__invert__ - <method-wrapper '__invert__' of int object at
OXx780285628170>
__le__ - <method-wrapper '__le__"' of 1int object at 0x780285628170>
__lshift__ - <method-wrapper '__1lshift__' of int object at
Ox780285628170>
lt__ - <method-wrapper '__1t__' of int object at 0x780285628170>
_mod__ - <method-wrapper '__mod__' of int object at 0x780285628170>
_mul__ - <method-wrapper '__mul__"' of int object at 0x780285628170>
_ - <method-wrapper '__ne__' of int object at 0x780285628170>
_ - <method-wrapper '__neg__' of 1int object at 0x780285628170>
_ - <built-in method __new__ of type object at 0x5732684a7320>
__or__ - <method-wrapper '__or__"' of int object at 0x780285628170>
__pos__ - <method-wrapper '__pos__' of 1int object at 0x780285628170>
__pow__ - <method-wrapper '__pow__' of 1int object at 0x780285628170>
__radd__ - <method-wrapper '__radd__' of int object at 0x780285628170>
__rand__ - <method-wrapper '__rand__' of int object at 0x780285628170>
__rdivmod__ - <method-wrapper '__rdivmod__' of int object at
Ox780285628170>

__reduce__ - <built-in method __reduce__ of int object at
Ox780285628170>

__reduce_ex__ - <built-in method __reduce_ex_

Ox780285628170>
__repr__ - <method-wrapper '__repr__"' of int object at 0x780285628170>

of int object at

__rfloordiv__ - <method-wrapper '__rfloordiv__' of int object at
Ox780285628170>

__rlshift__ - <method-wrapper '__rlshift__' of int object at
Ox780285628170>

__rmod__ - <method-wrapper '__rmod__' of int object at Ox780285628170>
__rmul__ - <method-wrapper '__rmul__' of int object at 0x780285628170>
__ror__ - <method-wrapper '__ror__"' of int object at 0x780285628170>
__round__ - <built-in method __round__ of int object at 0x780285628170>
__rpow__ - <method-wrapper '__rpow__' of int object at Ox780285628170>
__rrshift__ - <method-wrapper '__rrshift__' of int object at
Ox780285628170>

__rshift__ - <method-wrapper '__rshift__' of int object at
Ox780285628170>

__rsub__ - <method-wrapper '__rsub__' of int object at 0x780285628170>
__rtruediv__ - <method-wrapper '__rtruediv__"' of int object at
Ox780285628170>

__rxor__ - <method-wrapper '__rxor__"' of int object at Ox780285628170>
__setattr__ - <method-wrapper '__setattr__' of int object at
Ox780285628170>

__sizeof__ - <built-in method __sizeof__ of int object at
Ox780285628170>

__str__ - <method-wrapper '__str__' of 1int object at 0x780285628170>
__sub__ - <method-wrapper '__sub__' of int object at 0x780285628170>
__subclasshook__ - <built-in method __subclasshook__ of type object at
Ox5732684a7320>

__truediv__ - <method-wrapper '__truediv__' of int object at
Ox780285628170>

__trunc__ - <built-in method __trunc__ of 1int object at 0x780285628170>
__xor__ - <method-wrapper '__xor__"' of 1int object at 0x780285628170>

as_integer_ratio - <built-in method as_integer_ratio of int object at
Ox780285628170>

bit_count - <built-in method bit_count of int object at 0x780285628170>
bit_length - <built-in method bit_length of int object at
Ox780285628170>

conjugate - <built-in method conjugate of int object at 0x780285628170>
denominator - 1

from_bytes - <built-in method from_bytes of type object at
Ox5732684a7320>

imag - 0

numerator - 5

real - 5

to_bytes - <built-in method to_bytes of int object at 0x780285628170>

Klassen in Python

Alle Klassendefinitionen beginnen mit dem Schliisselwort , gefolgt vom Namen der Klasse und
einem Doppelpunkt. Jeder Code, der unterhalb der Klassendefinition eingeriickt ist, wird als Teil des
Klassenhauptteils betrachtet.

Analog zu C++ nutzt Python fiir die Interaktion mit den Klassenelementen eine dot notation.

OOPclass.py

1 dmport inspect

2

3~ class Dog: # Schlisselwort "class"
4 family = "Canidae"

5 name = "Bello"

6 age = 5

-

8 d = Dog()

9 print(d.family)

10 d.name = "Russel"

11 print(d.name)

12

13~ for name, data in dinspect.getmembers(d):
14 -~ if name == '__builtins__"':

15 continue

16 print(f'{name} - {repr(data)l}')

Canidae

Russel

__class__ - <class '__main__.Dog'>

__delattr__ - <method-wrapper '__delattr__' of Dog object at
Ox70556eafbcl0>

__dict__ - {'name': 'Russel'}

__dir__ - <built-in method __dir__ of Dog object at O0x70556eafbcl0>
__doc__ - None

__eq__ - <method-wrapper '__eq__"' of Dog object at 0x70556eafbcl0>
__format__ - <built-in method __format_
Ox70556eaftbcl0>

__ge__ - <method-wrapper '__ge__' of Dog object at 0x70556eafbcl0>
__getattribute__ - <method-wrapper '__getattribute__' of Dog object at
Ox70556eafbcl0>

__gt__ - <method-wrapper '__gt__' of Dog object at 0x70556eafbclO>
__hash__ - <method-wrapper '__hash__' of Dog object at 0x70556eafbcl0>
__init__ - <method-wrapper '__init__' of Dog object at 0x70556eafbcl0o>
__init_subclass__ - <built-in method __init_subclass__ of type object
at Ox60b9feac2e60>

_le__ - <method-wrapper '__le__' of Dog object at 0x70556eafbcl0>
_lt__ - <method-wrapper '__1lt__' of Dog object at 0x70556eafbclO>
__module__ - '__main__"

_ - <method-wrapper '__ne__' of Dog object at 0x70556eafbcl0>
__new__ - <built-in method __new__ of type object at 0x60b9dba4d800>
__reduce__ - <built-in method __reduce__ of Dog object at
Ox70556eafbcl0>
__reduce_ex__ - <built-in method __reduce_ex__ of Dog object at
Ox70556eaftbclo>
__repr__ - <method-wrapper '__repr__"' of Dog object at 0x70556eafbcl0o>
__setattr__ - <method-wrapper '__setattr__' of Dog object at
Ox70556eafbcl0O>

of Dog object at

__sizeof__ - <built-in method __sizeof__ of Dog object at
Ox70556eaftbclo>

_str__ - <method-wrapper '__str__' of Dog object at 0x70556eafbcl0O>
__subclasshook__ - <built-in method
Ox60b9feac2e60>

__weakref__ - None

_subclasshook__ of type object at

age - 5

family - 'Canidae'

name - 'Russel'

Canidae

Russel

__class__ - <class '__main__.Dog'>

__delattr__ - <method-wrapper '__delattr__' of Dog object at
Ox7a59d2657c10>
__dict__ - {'name': 'Russel'}
__dir__ - <built-in method __dir__ of Dog object at 0x7a59d2657c10>

_ — None
__eq__ - <method-wrapper '__eq__"' of Dog object at 0x7a59d2657c10>
__format__ - <built-in method __format__ of Dog object at
0x7a59d2657c10>
__ge__ - <method-wrapper '__ge__' of Dog object at 0x7a59d2657c10>
__getattribute__ - <method-wrapper '__getattribute__' of Dog object at
Ox7a59d2657c10>
__gt__ - <method-wrapper '__gt__' of Dog object at 0x7a59d2657c10>
__hash__ - <method-wrapper '__hash__' of Dog object at 0x7a59d2657c10>
__init__ - <method-wrapper '__init__' of Dog object at 0x7a59d2657c10>
__init_subclass__ - <built-in method __init_subclass__ of type object
at 0x5ab52f37ce60>

_ - <method-wrapper '__le__' of Dog object at 0x7a59d2657c10>

_ - <method-wrapper '__1t__' of Dog object at 0x7a59d2657c1l0>
__module__ - ' main__'
ne__ - <method-wrapper '__ne__' of Dog object at 0x7a59d2657cl0>
__new__ - <built-in method __new__ of type object at 0x5ab50802d800>
__reduce__ - <built-in method __reduce__ of Dog object at

Ox7a59d2657c10>

__reduce_ex__ - <built-in method __reduce_ex__ of Dog object at
Ox7a59d2657c10>
__repr__ - <method-wrapper '__repr__"' of Dog object at 0x7a59d2657c10>

__setattr__ - <method-wrapper '__setattr__' of Dog object at
0x7a59d2657c10>

__sizeof__ - <built-in method
0x7a59d2657c10>

__str__ - <method-wrapper '__str__' of Dog object at 0x7a59d2657c10>
__subclasshook__ - <built-in method __subclasshook__ of type object at
Ox5ab52f37ce60>

__weakref__ - None

_sizeof__ of Dog object at

age - 5
family - 'Canidae'
name - 'Russel'

Aufgabe: Erlautern Sie die Ausgabe folgenden Codes. Wie miissen wir das Ergebnis interpretieren?

OOPclass.py

1 mport inspect

2

3~ class Dog:

4 family = "Canidae"

5 name = "Bello"

6 age = 5

-

8 dl1 = Dog()

9 print("dog 1:", dl.name, dl.age)
10 print(dl)
11 d2 = Dog()
12 print("dog 2:", d2.name, d2.age)
13 print(d2)
14
15 print(dl == d2)

dog 1: Bello 5

<__main__.Dog object at 0x76e2fe23bcl0o>
dog 2: Bello 5

<__main__.Dog object at 0x76e2fel3bb50>
False

dog 1: Bello 5

<__main__.Dog object at 0x793ceO®bbfcl0o>
dog 2: Bello 5

<__main__.Dog object at 0x793ceOabbb50>
False

Antworten:

e d1und d2 sind Objekte vom Typ "Hund" mit gleichen Attributen (Name, Alter, Familie), aber es
handelt sich trotzdem um verschiedene Objekte (deren Daten an verschiedenen Stellen im Speicher
liegen)

® Gleichheit von zwei Objekten der Klasse Hund wird offenbar nicht als Gleichheit aller Attribute
berechnet.

© Man konnte Gleichheit von Hunden auch anders definieren (durch Definition einer speziellen
Methode)

Zudem fallt auf: Name und Alter sind fiir individuelle Hunde (iblicherweise verschieden, die Familie
"Canidae" bezieht sich aber auf alle Hunde. Um dies besser zu modellieren, sollte zwischem Instanzvariablen
und Klassenvariablen unterschieden werden ...

OOP Grundelemente in Python

Frage: Fiir welche Aufgaben ist der Konstruktor in einer Klasse verantwortlich?

OOPclass.py

1~ class Dog:
family = "Canidae" # Klassenvariable
~ def __init__(self, name, age):
self.name = name # Instanzvariable
self.age = age

i = Dog("Rex", 5)
print(i.name, 1i.family, 1i.age)

0 ~No o~ WN

Rex Canidae 5

Instanzmethoden sind Funktionen, die innerhalb einer Klasse definiert sind und nur von einer Instanz dieser

Klasse aufgerufen werden kdnnen. Genau wie bei| __init__ () | ist der erste Parameter einer

Instanzmethode immer self.

OOPclass.py il

1~ class Dog:

family = "Canidae"

def __init__(self, name, age):
self.name = name
self.age = age

4

4

def makeSound(self): # : nicht vergessen!
print(f"{self.name} says Wuff")

O 0o ~NOoO U~ WN

10 i = Dog("Rex", 5)
11 +.makeSound()

Rex says Wuff

Rex says Wuff

Aufgabe: Schreiben Sie eine Methode, so dass eine Instanz von Dog in Abhangigkeit von ihrem Alter
schlaft. Recherchieren Sie dazu unter| python delay |die notwendigen Methoden der
Klasse.

Wie Sie bereits bei der Inspektion der , aber auch der Klasse gesehen haben, existiert

eine Zahl von vordefinierten Funktionen - die sogenannten dunder Methods. Das Wort dunder leitet sich von
double underscore ab.

Methode Typ implementiert

__init__Q| Konstruktor

|
=
~

__str__(Methode Generiert einen String aus den Objektdaten

__add__(Q) Operator ObjObj Arithmetische Operation
Operator Obj EI Obj Logische Operation

1t O Operator Obj Obj

Eine gute Einflihrung und detailierte Erklarung liefert Link

Kapselung
Python nutzt zwei fiihrende Unterstriche, um Methoden und Variablen als private zu markieren.
private.py il
1~ class A:

2~ def method_public(self):
print("This is a public method")

w

4
5~ def __method_private(self):

6 print("This is a private method")
-

8

9

obj = AQ)
obj.method_public()

This is a public method

This is a public method

https://mathspp.com/blog/pydonts/dunder-methods

Auf private Methoden einer Klasse kann weder auRerhalb der Klasse noch von irgendeiner Basisklasse aus
zugegriffen werden kann.

Wie konnen wir die private Methode tiberhaupt aufrufen?

Vererbung

Was stort Sie an folgendem Codebeispiel?

RedundantCode.py ml

1~ class Student:
2~ def __init__(self, fname, lname):
3 self.firstname = fname

4 self.lastname = lname

5

6~ def printname(self):

7 print("Student -", self.firstname, self.lastname)
8

9

10 - class StaffMember:
11~ def __init__(self, fname, 1lname):

12 self.firstname = fname

13 self.lastname = lname

14

15~ def printname(self):

16 print("Staff -", self.firstname, self.lastname)
17

18 humboldt = Student("Alexander", "von Humboldt")
19 cotta = StaffMember ("Bernhard", "von Cotta")

20

21 humboldt.printname()

22 cotta.printname()

Student - Alexander von Humboldt
Staff - Bernhard von Cotta

Student - Alexander von Humboldt
Staff - Bernhard von Cotta

Vererbung libertragt das Verhalten einer Basisklasse auf eine abgeleitete Klasse. Dadurch wird redundanter
Code gespart.

Inheritance.py

1~ class Person:
2~ def __init__(self, fname, lname):
3 self.firstname = fname

4 self.lastname = lname
5

6~ def printname(self):

7 print(self.firstname, self.lastname)
8

9~ class Student(Person):
10 pass
11
12~ class StaffMember (Person):
13 pass
14

15 humboldt = Student("Alexander", "von Humboldt")
16 cotta = StaffMember ("Bernhard", "von Cotta")

17

18 humboldt.printname()

19 cotta.printname()

Alexander von Humboldt
Bernhard von Cotta

Alexander von Humboldt

Bernhard von Cotta

Unterklassen erweitern ihre Oberklasse typischerweise um zusatzliche Attribute und Methoden. Methoden
der Unterklasse konnen Methoden der Oberklasse tGiberschreiben (Method Overriding). Im folgenden Beispiel
wird dies anhand von zwei dunder Methoden gezeigt:

® inder —Methode (Konstruktor zur Erzeugung von Instanzen) ist der Unterklassen wird
jeweils ein weiteres Attribut angelegt. Die Konstruktoren der Unterklassen mussen auch den
Konstruktor der Oberklasse aufrufen.

e die| __str()__ [-Methode liefert eine String-Reprasention des Objekts, die inbesonder auch von

print |genutzt wird. Die Implementierung in den Unterklassen rufen hier auch die —

Methode der Oberklasse auf.

Inheritance2.py

1 "Unterklassen mit zusatzlichen Attributen"

2

3~ class Person:

4~ def __init__(self, fname, lname):

5 self.firstname = fname

6 self.lastname = 1lname

-

8~ def __str__(self):

9 return f"{self.firstname} {self.lastnamel}"

10

11 - class Student(Person):

12 - def __init__(self, fname, lname, id=10000):

13 super().__init__(fname, 1lname)

14 self.student_id = 1id

15

16~ def __str__(self):

17 return "Student: " + super().__str__() + f", ID: {self.studen

18

19 - class StaffMember (Person):

20~ def __init__(self, fname, lname, 1d=2000):

21 super().__init__(fname, 1lname)

22 self.staff_id = -id

23

24 ~ def __str__(self):

25 return "Staff Member: " + super().__str__() + f", ID: {self
.staff_id}"

26

27 humboldt = Student("Alexander'", "Humboldt")

28 cotta = StaffMember ("Bernhard", "von-Cotta", id=2001)

29

30 print(humboldt)

31 print(cotta)

Student: Alexander Humboldt, ID: 10000
Staff Member: Bernhard von-Cotta, ID: 2001

Student: Alexander Humboldt, ID: 10000
Staff Member: Bernhard von-Cotta, ID: 2001

Instanzvariablen und Klassenvariablen

Die Unterscheidung zwischen Instanzvariablen und Klassenvariablen wurde schon oben bei der Klasse Dog
angesprochen.

Instanzvariablen (oder Member Variables) sind typischerweise flir jedes Objekt unterschiedliche belegt.
Beispiele sind etwa der Name von Personen oder Tieren (Alexander, Mary, Fido, ...) oder die Matrikelnummer
von Studierenden.

Klassenvariablen beziehen dagegen sich auf die Klasse selbst.
® Der Zugriff auf Klassenvariablen sollte nach dem Schema Klassenname.Klassenvariable erfolgen!

Im folgenden Beispiel wird in der Klasse Student eine Klassenvariable next_available_id zur automatischen
Generierung eindeutiger Martikelnummern fiir neue Studierende genutzt.

ClassVariable.py il
1- class Person:
2~ def __init__(self, fname, lname):
3 self.firstname = fname
4 self.lastname = 1lname
5
6~ def __str__(self):
7 return f"{self.firstname} {self.lastnamel}"
8
9~ class Student(Person):
10
11 next_available_id = 10000
12
13- def __init__(self, fname, lname):
14 super().__init__(fname, lname)
15 self.student_id = Student.next_available_id
16 Student.next_available_id += 1
17
18 - def __str__(self):
19 return "Student: " + super().__str__() + f", ID: {self.studen
20
21

22 humboldt = Student("Alexander'", "Humboldt")

23 hegeler = Student("Mary'", "Hegeler")

24

25 print(humboldt)

26 print(hegeler)

27 print("Next available student ID:", Student.next_available_-id)

Student: Alexander Humboldt, ID: 10000
Student: Mary Hegeler, ID: 10001
Next available student ID: 10002

Student: Alexander Humboldt, ID: 10000
Student: Mary Hegeler, ID: 10001
Next available student ID: 10002

Python und C++ mit Blick auf OOP Konzepte

® Das Konzept der (Methoden-)Uberladung wird in Python nicht nativ unterstiitzt!

© in C++ kann es in einer Klasse mehrere Methoden gleichen Namens geben, sofern sich die Typen
der Parameter unterscheiden

© in Python kann es dagegen nur eine Methode mit demselben Namen geben

o als Konsequenz werden in Python oft Funktionen mit relativ vielen Parametern definiert
® viele oder oft auch alle Parameter haben Default-Werte, oft
® zusatzliche Typannotationen der Parameter verbessern die Lesbarkeit

® der Aufruf der Methoden erfolgt dann flexibel tiber Schliisselwort-Argumente (d.h. durch
explizite Angabe des Parameternames)

IIHHEHiIII

1~ class Dog:

2 def __init__(self,

3 name:str | None = None,

4 age:int | None = None,

b= breed:str | None = None):

6 self.name = name

7 self.age = age

8 self.breed = breed

9

10 - def __str__(self):

11 return f"Dog(Name: {self.name}, Age: {self.age}, Breed: {self
.breed})"

12

13 # Creating Dog instances with different combinations of arguments
14 dl1 = Dog(name = "Buddy", age=3, breed = "Golden Retriever")

15 d2 = Dog(age = 5, name = "Max")

16 d3 = Dog(name = "Bella", breed = "Beagle")
17 d4 = Dog()

18

19 print(dl, d2, d3, d4, sep="\n")

Dog(Name: Buddy, Age: 3, Breed: Golden Retriever)
Dog(Name: Max, Age: 5, Breed: None)

Dog(Name: Bella, Age: None, Breed: Beagle)

Dog(Name: None, Age: None, Breed: None)

Dog(Name: Buddy, Age: 3, Breed: Golden Retriever)
Dog(Name: Max, Age: 5, Breed: None)

Dog(Name: Bella, Age: None, Breed: Beagle)
Dog(Name: None, Age: None, Breed: None)

® Privateistin Python nicht wirklich private

o direkter Aufruf privater Methoden liber ihren eigentlichen Methodennamen resultiert in einem
Fehler

o private Methoden kénnen jedoch mittels "Name Mangling" aufgerufen werden

o private Methoden sollte man trotzdem nicht von auRerhalb der Klasse aufrufen (schlechter Stil)

NameMangling.py il

1~ class A:
2~ def fun(self):

3 print("This is a public method.",

4 "It may call a private method but this is none of your busi
)

5

6~ def __fun(self):

7 print("This 1is a private method.")

8

9 obj = A()

10 obj.fun()
11 # obj.__fun() # <- AttributeError
12 obj._A__fun() # <- Name Mangling "_classname__function"

This dis a public method. It may call a private method but this 1is none
of your business.
This is a private method.

This is a public method. It may call a private method but this 1is none

of your business.
This dis a private method.

OOP Beispiele

Nehmen wir an, dass wir eine Liste von Vornamen erzeugen wollen. Dabei soll sichergestellt werden, dass
diese unabhangig von den Eingaben der Bediener vergleichbar sind. Zudem sollen fehlerhafte Eingaben, die
zum Beispiel Zahlen enthalten erkannt und gefiltert werden.

Namelist.py !

1- class NamelList(list):
2 def __init__(self):

3 super().__init__()

4

5= def append(self, +item):

6~ if disinstance(item, str) and ditem.isalpha():

7 super () .append(item. lower ())

8- else:

9 print(f"Cannot add {item} to name list!",

10 "Expected a string with alphabetic characters only.")
11

12~ def uniques(self):

13 # return set(self) # no duplicates, but unordered
14 return sorted(set(self)) # no duplicates, ordered
15

16 friends = NameList()

17 friends.append("Jannes")

18 friends.append("linda")

19 friends.append("Moritz")

20 friends.append("MORITZ")

21 friends.append("Linda2") # name with digit is not allowed
22 friends.append(42) # wrong data type for name lists

23

24 print(friends)

25 print(friends.uniques())

Cannot add Linda2 to name list! Expected a string with alphabetic
characters only.

Cannot add 42 to name list! Expected a string with alphabetic
characters only.

['jannes', 'linda', 'moritz', 'moritz']

['jannes', 'linda', 'moritz']

Cannot add Linda2 to name list! Expected a string with alphabetic
characters only.

Cannot add 42 to name list! Expected a string with alphabetic

characters only.
['jannes', 'linda', 'moritz', 'moritz']
['jannes', 'linda', 'moritz']

J))

Dafiir schreiben wir eine abgeleitet Listenklasse mit einer eigenen Implementierung von| append () |.

Aufgabe Erweitern Sie die Implementierung auf die| extend () [Methode der Listen.

Zum Vergleich mit dem einflihrenden C++-Beispiel hier noch eine Python-Implementierung der Rectangle-
Klasse in C++. Der -Operator wird hier mittels der dunder—Methode| __dadd__() |(in-place addition)
implementiert.

Rectangle.py il
1~ class Rectangle:
2~ def __init__(self, width: float, height: float):
3 self.width = abs(width) # ensure non-negative width
4 self.height = abs(height)
5
6 def area(self):
7 return self.width * self.height
8
9- def __diadd__(self, offset):
10 ratio = (offset.area() + self.area()) / self.area()
11 self.width = ratio * self.width
12 return self
13
14~ +4if __name__ == "__main__":
15 rect_a = Rectangle(3, 4)
16 rect_b = Rectangle(1, 3)
17 print(f"Flache a {rect_a.area()1}")
18 print(f"Flache b : {rect_b.area()}")
19 rect_a += rect_b
20 print(f"Summe {rect_a.area()1}")

Flache
Flache
Summe

Flache
Flache
Summe

Dataclasses

Dataclasses, die es seit Python 3.7 gibt, ermoglichen eine einfache und komfortable Definition von Klassen,

die hauptsachlich der Datenhaltung dienen, aber deren Verhalten (durch Definition von Methoden) weniger

wichtig ist. Sie sind in etwa vergleichbar zu s in C++.

)

Fur Dataclasses wird viel "Boilerplate-Code" automatisch generiert, z.B. die Methoden | __dnit__ ()
__eq__()|und|__repr__()L

Die automatische Code-Generierung erfolgt durch einen Dekorator| @dataclass |

Feldervon Datenklassen werden liber Typannotationen sowie optionalen Default-Werten definiert (man
verwendet den Begriff Feld auch, weil die Felder syntaktisch eher wie Klassenvariablen aussehen, durch den

Dekorator aber zu Instanzvariablen gemacht werden; durch den anderen Begriff wird es weniger verwirrend).

dataclass_example.py il
1 from dataclasses 1import dataclass
2
3 (@dataclass
4 - class Dog:
5 name: str | None = None # field 'name' with default value None
6 age: int | None = None
7 breed: str | None = None
8
9 dl1 = Dog(name = "Buddy", age=3, breed = "Golden Retriever")
10 d2 = Dog(age = 5, name = "Max")
11 d3 = Dog(name = "Bella", breed = "Beagle")
12 d4 = Dog(breed = "Beagle", name = "Bella")
13 d5 = Dog()
14
15 print(di, d2, d3, d4, d5, sep="\n")
16 print("Is d3 equal to d4?", d3 == d4) # True, as the field values ar
same

Dog(name="'Buddy', age=3, breed='Golden Retriever')
Dog(name='Max', age=5, breed=None)
Dog(name='Bella', age=None, breed='Beagle')
Dog(name='Bella', age=None, breed='Beagle')
Dog(name=None, age=None, breed=None)

Is d3 equal to d4? True

Dog(name='Buddy', age=3, breed='Golden Retriever')
Dog(name="'Max', age=5, breed=None)
Dog(name='Bella', age=None, breed='Beagle')
Dog(name='Bella', age=None, breed='Beagle')

Dog(name=None, age=None, breed=None)
Is d3 equal to d4? True

Hinter den Kulissen erzeugt der Dekorator u.a. automatisch einen Konstruktor:

"Automatically generated __init__ method by @dataclass:"
def __init__(self,
name: str | None = None,

age: int | None = None,
breed: str | None = None):
self.name = name
self.age = age
self.breed = breed

Interessant an Dataclasses ist zudem, dass Instanzen entweder als veranderliche (Default) oder
unveranderliche Objekte definiert werden konnen.

® Erweitert man den Dekorator um den Parameter| frozen=True |, dann sind die Instanzen

unveranderlich

® FEin Vorteil von unveranderlichen Objekten ist, dass sie Elemente von Sets oder Schliissel von
Dictionaries sein konnen.

frozen_dataclass.py]

1 from dataclasses import dataclass

2

3 (@dataclass(frozen=True) # default: frozen=False
4 - class Dog:

5 name: str | None = None # field 'name' with default value None
6 age: int | None = None

7 breed: str | None = None

8

9 dl1 = Dog(name = "Buddy", age=3, breed = "Golden Retriever")
10 d2 = Dog(name = "Bella", breed = "Beagle")

11 d3 Dog(breed = "Beagle", name = "Bella")

12

13 dogs = {dl1, d2, d3} # d2 and d3 are considered equal

14 print(dogs)

{Dog(name='Bella', age=None, breed='Beagle'), Dog(name='Buddy', age=3,
breed='Golden Retriever')}

{Dog(name="'Buddy', age=3, breed='Golden Retriever'), Dog(name='Bella',

age=None, breed='Beagle')}

Aufgabe Definieren Sie ein Dictionary, in welchem Instanzen der Dataclass Dog als Schlissel
verwendet werden. Experimentieren Sie dabei mit den beiden moglichen Werten den Parameter
des Dekorators (False bzw. True).

Quiz

Objektorientierung in Python

Fur welche der genannten Grundprinzipien der objektorientierten Programmierung treffen folgende
Aussagen zu:

Kapselung Vererbung Polymorphie

Welche konkrete Implementierung der

O O O Methode aufgerufen wird, hangt davon

ab mit welchem konkreten Objekt sie
aufrufen wird.

Objekte schiitzen ihre Daten und
O O O Methoden sofern diese nicht als

"offentlich" deklariert sind.

Objekte konnen ihre Daten und

O O O Methoden an andere, spezielle Objekte

weitergeben.

Klassen in Python

Mit welchem Schliisselwort beginnen Klassendefinitionen in Python?

class Student:

lastName = "Neuer"
firstName = "Markus"
age = 20

neuer = Student()

[

OOP Grundelemente in Python

Wie lauten die Ausgaben foldender Programme?

class Player:
max_health = 100
max_experience = 10

def __init__(self, name, level):
self.name = name
self.level = level

pl Player ("Peter", 2)
p2 Player ("Frank", 6)
print(p2.level, p2.experience)

self.health = Player.max_health
self.experience = Player.max_experience

class Player:
max_health = 100
max_experience = 10

def __init__(self, name, level):
self.name = name
self.level = level

def level_up(self):
self.level += 1

self.experience = 1

pl Player ("Peter", 2)

p2 = Player("Frank", 6)
p2.level_up()

print(p2.level, p2.experience)

self.health = Player.max_health
self.experience = Player.max_experience

self.health = Player.max_health

Welche dieser Methoden ist eine dunder Method?

O]
O [zl

O =
O]

Kapselung

Welche der im folgenden Code aufgefiihrten Methoden und Variablen sind offentlich und welche
privat?

class Dog:
def bark(self):
print("woof")

def __bark_loud(self):
print("WOOF!")

Fifi = Dog()
Fifi.bark_loud()

| __bark_loud() |
(:) <:> offentlich

(::) (::) privat

Was ist die Ausgabe des oben gezeigten Codes?

O Das Programm wird mit einem Error abgebrochen

Ist es in Python grundsatzlich méglich auch private Methoden auszufiihren?

(:) Nein

class Dog:

def bark(self):

def __bark_subtle(self):
print("woof")

def __bark_loud(self):
print("WOOF!")

Fifi = Dog()
Fifi.bark()

Vererbung

Verhalten der Klasse| Fahrzeug |erbt?

class Fahrzeug:
def __init__(self, ps):
self.ps = ps

al = Auto(70)

[

