
Objektorientierung in Python

Veranstaltung:
Prozedurale Programmierung / Einführung in
die Informatik / Erhebung, Analyse und
Visualisierung digitaler Daten

Semester Wintersemester 2025/26

Hochschule: Technische Universität Freiberg

Inhalte: Objektorientierung in Python

Link auf Repository:
https://github.com/TUBAF-IfI-
LiaScript/VL_EAVD/blob/master/09_PythonOOP.md

Autoren Sebastian Zug & André Dietrich & Galina Rudolf & Bernhard Jung

Fragen an die heutige Veranstaltung ...

Objektorientierung in Python

Wie lassen sich die Konzepte der OOP in Python ausdrücken?

Welche spezifischen Einschränkungen gibt es dabei?





Parameter Kursinformationen

https://github.com/TUBAF-IfI-LiaScript/VL_EAVD/blob/master/09_PythonOOP.md
https://github.com/TUBAF-IfI-LiaScript/VL_EAVD/blob/master/09_PythonOOP.md
https://github.com/TUBAF-IfI-LiaScript/VL_EAVD/blob/master/09_PythonOOP.md
https://github.com/TUBAF-IfI-LiaScript/VL_EAVD/blob/master/09_PythonOOP.md

Klassen werden verwendet, um benutzerdefinierte Datenstrukturen zu erstellen und definieren
Funktionen, sogenannte Methoden, die das Verhalten und die Aktionen identifizieren, die ein aus der
Klasse erstelltes Objekt mit seinen Daten ausführen kann.

Eine kurze Auffrischung Ihrer Erinnerungen zur objektorientierter Programmierung in C++ ...

Comparison.cpp

Fläche a : 12
Fläche b : 3
Summe : 15

#include <iostream>
#include <cmath>

class Rectangle {
 private:
 float width, height;
 public:
 Rectangle(float w, float h){
 this->width = abs(w); // ensure non-negative width
 this->height = abs(h);
 }
 float area() {return width*height;}
 Rectangle operator+=(Rectangle offset) {
 float ratio = (offset.area() + this->area()) / this->area();
 this->width = ratio * this->width;
 return *this;
 }
};

int main () {
 Rectangle rect_a(3,4);
 Rectangle rect_b(1,3);
 std::cout << "Fläche a : " << rect_a.area() << "\n";
 std::cout << "Fläche b : " << rect_b.area() << "\n";
 rect_a += rect_b;
 std::cout << "Summe : " << rect_a.area();

 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29



4-18
Definition der Klasse Rectangle (Schablone für Daten, Methoden,
Operatoren)

6 Gekapselte Daten der Klasse, diese sind "von Außen" nicht sichtbar

8 Konstruktor mit Evaluation der übergebenen Parameter

12 Methode über den Daten der Klasse

13 Individueller Operator + mit einer spezifischen Bedeutung

21-26
Generierung von Objekten mittels Konstruktoraufruf und
Parameterübergabe, Methoden- und Operatoraufrufe

Objektorientierte Programmierung (OOP) ist ein Paradigma, das über die Ideen der Prozeduralen
Programmierung hinaus geht. Es definiert Objekte und deren Verhalten. Dabei baut es auf 3 zentralen
Grundprinzipien auf:

Was intern passiert bleibt intern!

Von wem hat er das denn wohl?

Was bist denn Du für einer?

Vorteile der objektorientierten Programmierung

1. Kapselung Objekte kapseln ihre Daten, Operatoren, Methoden usw. sofern diese nicht als "öffentlich"
deklariert sind.

2. Vererbung Objekte können "Fähigkeiten" an andere, speziellere Objekte weitergeben.

3. Polymorphismus Objekte werden durch Kapselung und Vererbung austauschbar!

höhere Wartbarkeit durch Abstraktion

Wiederverwendbarkeit von Code (bessere Wiederverwendbarkeit je kleiner und allgemeiner die
Objekte gehalten sind)

schlanker und übersichtlicher Code durch Vererbung







Zeile Bedeutung

Warum also nicht immer objektorientiert entwickeln?

OOP verführt ggf. dazu, das eigentliche Problem durch einen aufwändigen Entwurf unnötig zu
verkomplizieren. Dabei ist die Entwicklung der Gesamtstruktur eines komplexen Softwareprojektes aus n
Objekten eine Kunst und braucht viel Übung! Erst, wenn man entsprechende Regeln kennt und sinnvoll
anwendet, zeigen sich die Vorteile des Paradigmas.

... und in Python?

In Python ist alles ein Objekt!

... z.B. auch Integer und Floats, die in C++ und vielen anderen Programmiersprachen keine Objekte sind

import inspect

i=5

for name, data in inspect.getmembers(i):
 if name == '__builtins__':
 continue
 print(f'{name} - {repr(data)}')

1
2
3
4
5
6
7
8



__abs__ - <method-wrapper '__abs__' of int object at 0x7e54c5cac170>
__add__ - <method-wrapper '__add__' of int object at 0x7e54c5cac170>
__and__ - <method-wrapper '__and__' of int object at 0x7e54c5cac170>
__bool__ - <method-wrapper '__bool__' of int object at 0x7e54c5cac170>
__ceil__ - <built-in method __ceil__ of int object at 0x7e54c5cac170>
__class__ - <class 'int'>
__delattr__ - <method-wrapper '__delattr__' of int object at
0x7e54c5cac170>
__dir__ - <built-in method __dir__ of int object at 0x7e54c5cac170>
__divmod__ - <method-wrapper '__divmod__' of int object at
0x7e54c5cac170>
__doc__ - "int([x]) -> integer\nint(x, base=10) -> integer\n\nConvert a
number or string to an integer, or return 0 if no arguments\nare given.
If x is a number, return x.__int__(). For floating point\nnumbers,
this truncates towards zero.\n\nIf x is not a number or if base is
given, then x must be a string,\nbytes, or bytearray instance
representing an integer literal in the\ngiven base. The literal can be
preceded by '+' or '-' and be surrounded\nby whitespace. The base
defaults to 10. Valid bases are 0 and 2-36.\nBase 0 means to interpret
the base from the string as an integer literal.\n>>> int('0b100',
base=0)\n4"
__eq__ - <method-wrapper '__eq__' of int object at 0x7e54c5cac170>
__float__ - <method-wrapper '__float__' of int object at
0x7e54c5cac170>
__floor__ - <built-in method __floor__ of int object at 0x7e54c5cac170>
__floordiv__ - <method-wrapper '__floordiv__' of int object at
0x7e54c5cac170>
__format__ - <built-in method __format__ of int object at
0x7e54c5cac170>
__ge__ - <method-wrapper '__ge__' of int object at 0x7e54c5cac170>
__getattribute__ - <method-wrapper '__getattribute__' of int object at
0x7e54c5cac170>
__getnewargs__ - <built-in method __getnewargs__ of int object at
0x7e54c5cac170>
__gt__ - <method-wrapper '__gt__' of int object at 0x7e54c5cac170>
__hash__ - <method-wrapper '__hash__' of int object at 0x7e54c5cac170>
__index__ - <method-wrapper '__index__' of int object at
0x7e54c5cac170>
__init__ - <method-wrapper '__init__' of int object at 0x7e54c5cac170>
__init_subclass__ - <built-in method __init_subclass__ of type object
at 0x5ca15f654320>
__int__ - <method-wrapper '__int__' of int object at 0x7e54c5cac170>
__invert__ - <method-wrapper '__invert__' of int object at

0x7e54c5cac170>
__le__ - <method-wrapper '__le__' of int object at 0x7e54c5cac170>
__lshift__ - <method-wrapper '__lshift__' of int object at
0x7e54c5cac170>
__lt__ - <method-wrapper '__lt__' of int object at 0x7e54c5cac170>
__mod__ - <method-wrapper '__mod__' of int object at 0x7e54c5cac170>
__mul__ - <method-wrapper '__mul__' of int object at 0x7e54c5cac170>
__ne__ - <method-wrapper '__ne__' of int object at 0x7e54c5cac170>
__neg__ - <method-wrapper '__neg__' of int object at 0x7e54c5cac170>
__new__ - <built-in method __new__ of type object at 0x5ca15f654320>
__or__ - <method-wrapper '__or__' of int object at 0x7e54c5cac170>
__pos__ - <method-wrapper '__pos__' of int object at 0x7e54c5cac170>
__pow__ - <method-wrapper '__pow__' of int object at 0x7e54c5cac170>
__radd__ - <method-wrapper '__radd__' of int object at 0x7e54c5cac170>
__rand__ - <method-wrapper '__rand__' of int object at 0x7e54c5cac170>
__rdivmod__ - <method-wrapper '__rdivmod__' of int object at
0x7e54c5cac170>
__reduce__ - <built-in method __reduce__ of int object at
0x7e54c5cac170>
__reduce_ex__ - <built-in method __reduce_ex__ of int object at
0x7e54c5cac170>
__repr__ - <method-wrapper '__repr__' of int object at 0x7e54c5cac170>
__rfloordiv__ - <method-wrapper '__rfloordiv__' of int object at
0x7e54c5cac170>
__rlshift__ - <method-wrapper '__rlshift__' of int object at
0x7e54c5cac170>
__rmod__ - <method-wrapper '__rmod__' of int object at 0x7e54c5cac170>
__rmul__ - <method-wrapper '__rmul__' of int object at 0x7e54c5cac170>
__ror__ - <method-wrapper '__ror__' of int object at 0x7e54c5cac170>
__round__ - <built-in method __round__ of int object at 0x7e54c5cac170>
__rpow__ - <method-wrapper '__rpow__' of int object at 0x7e54c5cac170>
__rrshift__ - <method-wrapper '__rrshift__' of int object at
0x7e54c5cac170>
__rshift__ - <method-wrapper '__rshift__' of int object at
0x7e54c5cac170>
__rsub__ - <method-wrapper '__rsub__' of int object at 0x7e54c5cac170>
__rtruediv__ - <method-wrapper '__rtruediv__' of int object at
0x7e54c5cac170>
__rxor__ - <method-wrapper '__rxor__' of int object at 0x7e54c5cac170>
__setattr__ - <method-wrapper '__setattr__' of int object at
0x7e54c5cac170>
__sizeof__ - <built-in method __sizeof__ of int object at
0x7e54c5cac170>

__str__ - <method-wrapper '__str__' of int object at 0x7e54c5cac170>
__sub__ - <method-wrapper '__sub__' of int object at 0x7e54c5cac170>
__subclasshook__ - <built-in method __subclasshook__ of type object at
0x5ca15f654320>
__truediv__ - <method-wrapper '__truediv__' of int object at
0x7e54c5cac170>
__trunc__ - <built-in method __trunc__ of int object at 0x7e54c5cac170>
__xor__ - <method-wrapper '__xor__' of int object at 0x7e54c5cac170>
as_integer_ratio - <built-in method as_integer_ratio of int object at
0x7e54c5cac170>
bit_count - <built-in method bit_count of int object at 0x7e54c5cac170>
bit_length - <built-in method bit_length of int object at
0x7e54c5cac170>
conjugate - <built-in method conjugate of int object at 0x7e54c5cac170>
denominator - 1
from_bytes - <built-in method from_bytes of type object at
0x5ca15f654320>
imag - 0
numerator - 5
real - 5
to_bytes - <built-in method to_bytes of int object at 0x7e54c5cac170>
__abs__ - <method-wrapper '__abs__' of int object at 0x780285628170>
__add__ - <method-wrapper '__add__' of int object at 0x780285628170>
__and__ - <method-wrapper '__and__' of int object at 0x780285628170>
__bool__ - <method-wrapper '__bool__' of int object at 0x780285628170>
__ceil__ - <built-in method __ceil__ of int object at 0x780285628170>
__class__ - <class 'int'>
__delattr__ - <method-wrapper '__delattr__' of int object at
0x780285628170>
__dir__ - <built-in method __dir__ of int object at 0x780285628170>
__divmod__ - <method-wrapper '__divmod__' of int object at
0x780285628170>
__doc__ - "int([x]) -> integer\nint(x, base=10) -> integer\n\nConvert a
number or string to an integer, or return 0 if no arguments\nare given.
If x is a number, return x.__int__(). For floating point\nnumbers,
this truncates towards zero.\n\nIf x is not a number or if base is
given, then x must be a string,\nbytes, or bytearray instance
representing an integer literal in the\ngiven base. The literal can be
preceded by '+' or '-' and be surrounded\nby whitespace. The base
defaults to 10. Valid bases are 0 and 2-36.\nBase 0 means to interpret
the base from the string as an integer literal.\n>>> int('0b100',
base=0)\n4"
__eq__ - <method-wrapper '__eq__' of int object at 0x780285628170>

__float__ - <method-wrapper '__float__' of int object at
0x780285628170>
__floor__ - <built-in method __floor__ of int object at 0x780285628170>
__floordiv__ - <method-wrapper '__floordiv__' of int object at
0x780285628170>
__format__ - <built-in method __format__ of int object at
0x780285628170>
__ge__ - <method-wrapper '__ge__' of int object at 0x780285628170>
__getattribute__ - <method-wrapper '__getattribute__' of int object at
0x780285628170>
__getnewargs__ - <built-in method __getnewargs__ of int object at
0x780285628170>
__gt__ - <method-wrapper '__gt__' of int object at 0x780285628170>
__hash__ - <method-wrapper '__hash__' of int object at 0x780285628170>
__index__ - <method-wrapper '__index__' of int object at
0x780285628170>
__init__ - <method-wrapper '__init__' of int object at 0x780285628170>
__init_subclass__ - <built-in method __init_subclass__ of type object
at 0x5732684a7320>
__int__ - <method-wrapper '__int__' of int object at 0x780285628170>
__invert__ - <method-wrapper '__invert__' of int object at
0x780285628170>
__le__ - <method-wrapper '__le__' of int object at 0x780285628170>
__lshift__ - <method-wrapper '__lshift__' of int object at
0x780285628170>
__lt__ - <method-wrapper '__lt__' of int object at 0x780285628170>
__mod__ - <method-wrapper '__mod__' of int object at 0x780285628170>
__mul__ - <method-wrapper '__mul__' of int object at 0x780285628170>
__ne__ - <method-wrapper '__ne__' of int object at 0x780285628170>
__neg__ - <method-wrapper '__neg__' of int object at 0x780285628170>
__new__ - <built-in method __new__ of type object at 0x5732684a7320>
__or__ - <method-wrapper '__or__' of int object at 0x780285628170>
__pos__ - <method-wrapper '__pos__' of int object at 0x780285628170>
__pow__ - <method-wrapper '__pow__' of int object at 0x780285628170>
__radd__ - <method-wrapper '__radd__' of int object at 0x780285628170>
__rand__ - <method-wrapper '__rand__' of int object at 0x780285628170>
__rdivmod__ - <method-wrapper '__rdivmod__' of int object at
0x780285628170>
__reduce__ - <built-in method __reduce__ of int object at
0x780285628170>
__reduce_ex__ - <built-in method __reduce_ex__ of int object at
0x780285628170>
__repr__ - <method-wrapper '__repr__' of int object at 0x780285628170>

__rfloordiv__ - <method-wrapper '__rfloordiv__' of int object at
0x780285628170>
__rlshift__ - <method-wrapper '__rlshift__' of int object at
0x780285628170>
__rmod__ - <method-wrapper '__rmod__' of int object at 0x780285628170>
__rmul__ - <method-wrapper '__rmul__' of int object at 0x780285628170>
__ror__ - <method-wrapper '__ror__' of int object at 0x780285628170>
__round__ - <built-in method __round__ of int object at 0x780285628170>
__rpow__ - <method-wrapper '__rpow__' of int object at 0x780285628170>
__rrshift__ - <method-wrapper '__rrshift__' of int object at
0x780285628170>
__rshift__ - <method-wrapper '__rshift__' of int object at
0x780285628170>
__rsub__ - <method-wrapper '__rsub__' of int object at 0x780285628170>
__rtruediv__ - <method-wrapper '__rtruediv__' of int object at
0x780285628170>
__rxor__ - <method-wrapper '__rxor__' of int object at 0x780285628170>
__setattr__ - <method-wrapper '__setattr__' of int object at
0x780285628170>
__sizeof__ - <built-in method __sizeof__ of int object at
0x780285628170>
__str__ - <method-wrapper '__str__' of int object at 0x780285628170>
__sub__ - <method-wrapper '__sub__' of int object at 0x780285628170>
__subclasshook__ - <built-in method __subclasshook__ of type object at
0x5732684a7320>
__truediv__ - <method-wrapper '__truediv__' of int object at
0x780285628170>
__trunc__ - <built-in method __trunc__ of int object at 0x780285628170>
__xor__ - <method-wrapper '__xor__' of int object at 0x780285628170>
as_integer_ratio - <built-in method as_integer_ratio of int object at
0x780285628170>
bit_count - <built-in method bit_count of int object at 0x780285628170>
bit_length - <built-in method bit_length of int object at
0x780285628170>
conjugate - <built-in method conjugate of int object at 0x780285628170>
denominator - 1
from_bytes - <built-in method from_bytes of type object at
0x5732684a7320>
imag - 0
numerator - 5
real - 5
to_bytes - <built-in method to_bytes of int object at 0x780285628170>

Klassen in Python
Alle Klassendefinitionen beginnen mit dem Schlüsselwort class , gefolgt vom Namen der Klasse und
einem Doppelpunkt. Jeder Code, der unterhalb der Klassendefinition eingerückt ist, wird als Teil des
Klassenhauptteils betrachtet.

Analog zu C++ nutzt Python für die Interaktion mit den Klassenelementen eine dot notation.

OOPclass.py

import inspect

class Dog: # Schlüsselwort "class"
 family = "Canidae"
 name = "Bello"
 age = 5

d = Dog()
print(d.family)
d.name = "Russel"
print(d.name)

for name, data in inspect.getmembers(d):
 if name == '__builtins__':
 continue
 print(f'{name} - {repr(data)}')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16



Canidae
Russel
__class__ - <class '__main__.Dog'>
__delattr__ - <method-wrapper '__delattr__' of Dog object at
0x70556eafbc10>
__dict__ - {'name': 'Russel'}
__dir__ - <built-in method __dir__ of Dog object at 0x70556eafbc10>
__doc__ - None
__eq__ - <method-wrapper '__eq__' of Dog object at 0x70556eafbc10>
__format__ - <built-in method __format__ of Dog object at
0x70556eafbc10>
__ge__ - <method-wrapper '__ge__' of Dog object at 0x70556eafbc10>
__getattribute__ - <method-wrapper '__getattribute__' of Dog object at
0x70556eafbc10>
__gt__ - <method-wrapper '__gt__' of Dog object at 0x70556eafbc10>
__hash__ - <method-wrapper '__hash__' of Dog object at 0x70556eafbc10>
__init__ - <method-wrapper '__init__' of Dog object at 0x70556eafbc10>
__init_subclass__ - <built-in method __init_subclass__ of type object
at 0x60b9feac2e60>
__le__ - <method-wrapper '__le__' of Dog object at 0x70556eafbc10>
__lt__ - <method-wrapper '__lt__' of Dog object at 0x70556eafbc10>
__module__ - '__main__'
__ne__ - <method-wrapper '__ne__' of Dog object at 0x70556eafbc10>
__new__ - <built-in method __new__ of type object at 0x60b9dba4d800>
__reduce__ - <built-in method __reduce__ of Dog object at
0x70556eafbc10>
__reduce_ex__ - <built-in method __reduce_ex__ of Dog object at
0x70556eafbc10>
__repr__ - <method-wrapper '__repr__' of Dog object at 0x70556eafbc10>
__setattr__ - <method-wrapper '__setattr__' of Dog object at
0x70556eafbc10>
__sizeof__ - <built-in method __sizeof__ of Dog object at
0x70556eafbc10>
__str__ - <method-wrapper '__str__' of Dog object at 0x70556eafbc10>
__subclasshook__ - <built-in method __subclasshook__ of type object at
0x60b9feac2e60>
__weakref__ - None
age - 5
family - 'Canidae'
name - 'Russel'
Canidae
Russel
__class__ - <class '__main__.Dog'>

__delattr__ - <method-wrapper '__delattr__' of Dog object at
0x7a59d2657c10>
__dict__ - {'name': 'Russel'}
__dir__ - <built-in method __dir__ of Dog object at 0x7a59d2657c10>
__doc__ - None
__eq__ - <method-wrapper '__eq__' of Dog object at 0x7a59d2657c10>
__format__ - <built-in method __format__ of Dog object at
0x7a59d2657c10>
__ge__ - <method-wrapper '__ge__' of Dog object at 0x7a59d2657c10>
__getattribute__ - <method-wrapper '__getattribute__' of Dog object at
0x7a59d2657c10>
__gt__ - <method-wrapper '__gt__' of Dog object at 0x7a59d2657c10>
__hash__ - <method-wrapper '__hash__' of Dog object at 0x7a59d2657c10>
__init__ - <method-wrapper '__init__' of Dog object at 0x7a59d2657c10>
__init_subclass__ - <built-in method __init_subclass__ of type object
at 0x5ab52f37ce60>
__le__ - <method-wrapper '__le__' of Dog object at 0x7a59d2657c10>
__lt__ - <method-wrapper '__lt__' of Dog object at 0x7a59d2657c10>
__module__ - '__main__'
__ne__ - <method-wrapper '__ne__' of Dog object at 0x7a59d2657c10>
__new__ - <built-in method __new__ of type object at 0x5ab50802d800>
__reduce__ - <built-in method __reduce__ of Dog object at
0x7a59d2657c10>
__reduce_ex__ - <built-in method __reduce_ex__ of Dog object at
0x7a59d2657c10>
__repr__ - <method-wrapper '__repr__' of Dog object at 0x7a59d2657c10>
__setattr__ - <method-wrapper '__setattr__' of Dog object at
0x7a59d2657c10>
__sizeof__ - <built-in method __sizeof__ of Dog object at
0x7a59d2657c10>
__str__ - <method-wrapper '__str__' of Dog object at 0x7a59d2657c10>
__subclasshook__ - <built-in method __subclasshook__ of type object at
0x5ab52f37ce60>
__weakref__ - None
age - 5
family - 'Canidae'
name - 'Russel'

Aufgabe: Erläutern Sie die Ausgabe folgenden Codes. Wie müssen wir das Ergebnis interpretieren?

OOPclass.py

dog 1: Bello 5
<__main__.Dog object at 0x76e2fe23bc10>
dog 2: Bello 5
<__main__.Dog object at 0x76e2fe13bb50>
False
dog 1: Bello 5
<__main__.Dog object at 0x793ce0bbfc10>
dog 2: Bello 5
<__main__.Dog object at 0x793ce0abbb50>
False

Antworten:

Zudem fällt auf: Name und Alter sind für individuelle Hunde üblicherweise verschieden, die Familie
"Canidae" bezieht sich aber auf alle Hunde. Um dies besser zu modellieren, sollte zwischem Instanzvariablen
und Klassenvariablen unterschieden werden ...

OOP Grundelemente in Python

import inspect

class Dog:
 family = "Canidae"
 name = "Bello"
 age = 5

d1 = Dog()
print("dog 1:", d1.name, d1.age)
print(d1)
d2 = Dog()
print("dog 2:", d2.name, d2.age)
print(d2)

print(d1 == d2)

d1 und d2 sind Objekte vom Typ "Hund" mit gleichen Attributen (Name, Alter, Familie), aber es
handelt sich trotzdem um verschiedene Objekte (deren Daten an verschiedenen Stellen im Speicher
liegen)

Gleichheit von zwei Objekten der Klasse Hund wird offenbar nicht als Gleichheit aller Attribute
berechnet.





Man könnte Gleichheit von Hunden auch anders definieren (durch Definition einer speziellen
Methode __eq__)



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15



Frage: Für welche Aufgaben ist der Konstruktor in einer Klasse verantwortlich?

OOPclass.py

Rex Canidae 5

Instanzmethoden sind Funktionen, die innerhalb einer Klasse definiert sind und nur von einer Instanz dieser
Klasse aufgerufen werden können. Genau wie bei __init__() ist der erste Parameter einer
Instanzmethode immer self.

OOPclass.py

Rex says Wuff
Rex says Wuff

Aufgabe: Schreiben Sie eine Methode, so dass eine Instanz von Dog in Abhängigkeit von ihrem Alter
schläft. Recherchieren Sie dazu unter python delay die notwendigen Methoden der time
Klasse.

class Dog:
 family = "Canidae" # Klassenvariable
 def __init__(self, name, age):
 self.name = name # Instanzvariable
 self.age = age

i = Dog("Rex", 5)
print(i.name, i.family, i.age)

class Dog:
 family = "Canidae"
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def makeSound(self): # : nicht vergessen!
 print(f"{self.name} says Wuff")

i = Dog("Rex", 5)
i.makeSound()

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9
10
11





Wie Sie bereits bei der Inspektion der list , int aber auch der Dog Klasse gesehen haben, existiert
eine Zahl von vordefinierten Funktionen - die sogenannten dunder Methods. Das Wort dunder leitet sich von
double underscore ab.

__init__() Konstruktor

__str__() Methode Generiert einen String aus den Objektdaten

...

__add__() Operator Obj + Obj Arithmetische Operation

...

__eq__() Operator Obj == Obj Logische Operation

__lt__() Operator Obj <= Obj

...

Eine gute Einführung und detailierte Erklärung liefert Link

Kapselung
Python nutzt zwei führende Unterstriche, um Methoden und Variablen als private zu markieren.

private.py

This is a public method
This is a public method

class A:
 def method_public(self):
 print("This is a public method")

 def __method_private(self):
 print("This is a private method")

obj = A()
obj.method_public()

Methode Typ implementiert

1
2
3
4
5
6
7
8
9



https://mathspp.com/blog/pydonts/dunder-methods

Auf private Methoden einer Klasse kann weder außerhalb der Klasse noch von irgendeiner Basisklasse aus
zugegriffen werden kann.

Wie können wir die private Methode überhaupt aufrufen?

Vererbung

Was stört Sie an folgendem Codebeispiel?

RedundantCode.py

Student - Alexander von Humboldt
Staff - Bernhard von Cotta
Student - Alexander von Humboldt
Staff - Bernhard von Cotta

Vererbung überträgt das Verhalten einer Basisklasse auf eine abgeleitete Klasse. Dadurch wird redundanter
Code gespart.

class Student:
 def __init__(self, fname, lname):
 self.firstname = fname
 self.lastname = lname

 def printname(self):
 print("Student -", self.firstname, self.lastname)

class StaffMember:
 def __init__(self, fname, lname):
 self.firstname = fname
 self.lastname = lname

 def printname(self):
 print("Staff -", self.firstname, self.lastname)

humboldt = Student("Alexander", "von Humboldt")
cotta = StaffMember("Bernhard", "von Cotta")

humboldt.printname()
cotta.printname()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22



Inheritance.py

Alexander von Humboldt
Bernhard von Cotta
Alexander von Humboldt
Bernhard von Cotta

Unterklassen erweitern ihre Oberklasse typischerweise um zusätzliche Attribute und Methoden. Methoden
der Unterklasse können Methoden der Oberklasse überschreiben (Method Overriding). Im folgenden Beispiel
wird dies anhand von zwei dunder Methoden gezeigt:

class Person:
 def __init__(self, fname, lname):
 self.firstname = fname
 self.lastname = lname

 def printname(self):
 print(self.firstname, self.lastname)

class Student(Person):
 pass

class StaffMember(Person):
 pass

humboldt = Student("Alexander", "von Humboldt")
cotta = StaffMember("Bernhard", "von Cotta")

humboldt.printname()
cotta.printname()

in der __init__ -Methode (Konstruktor zur Erzeugung von Instanzen) ist der Unterklassen wird
jeweils ein weiteres Attribut angelegt. Die Konstruktoren der Unterklassen müssen auch den
Konstruktor der Oberklasse aufrufen.

die __str()__ -Methode liefert eine String-Repräsention des Objekts, die inbesonder auch von
print genutzt wird. Die Implementierung in den Unterklassen rufen hier auch die __str__ -

Methode der Oberklasse auf.





1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19



Inheritance2.py

Student: Alexander Humboldt, ID: 10000
Staff Member: Bernhard von-Cotta, ID: 2001
Student: Alexander Humboldt, ID: 10000
Staff Member: Bernhard von-Cotta, ID: 2001

Instanzvariablen und Klassenvariablen
Die Unterscheidung zwischen Instanzvariablen und Klassenvariablen wurde schon oben bei der Klasse Dog
angesprochen.

"Unterklassen mit zusätzlichen Attributen"

class Person:
 def __init__(self, fname, lname):
 self.firstname = fname
 self.lastname = lname

 def __str__(self):
 return f"{self.firstname} {self.lastname}"

class Student(Person):
 def __init__(self, fname, lname, id=10000):
 super().__init__(fname, lname)
 self.student_id = id

 def __str__(self):
 return "Student: " + super().__str__() + f", ID: {self.studen

class StaffMember(Person):
 def __init__(self, fname, lname, id=2000):
 super().__init__(fname, lname)
 self.staff_id = id

 def __str__(self):
 return "Staff Member: " + super().__str__() + f", ID: {self
 .staff_id}"

humboldt = Student("Alexander", "Humboldt")
cotta = StaffMember("Bernhard", "von-Cotta", id=2001)

print(humboldt)
print(cotta)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31



Instanzvariablen (oder Member Variables) sind typischerweise für jedes Objekt unterschiedliche belegt.
Beispiele sind etwa der Name von Personen oder Tieren (Alexander, Mary, Fido, ...) oder die Matrikelnummer
von Studierenden.

Klassenvariablen beziehen dagegen sich auf die Klasse selbst.

Im folgenden Beispiel wird in der Klasse Student eine Klassenvariable next_available_id zur automatischen
Generierung eindeutiger Martikelnummern für neue Studierende genutzt.

ClassVariable.py

Student: Alexander Humboldt, ID: 10000
Student: Mary Hegeler, ID: 10001
Next available student ID: 10002
Student: Alexander Humboldt, ID: 10000
Student: Mary Hegeler, ID: 10001
Next available student ID: 10002

Der Zugriff auf Klassenvariablen sollte nach dem Schema Klassenname.Klassenvariable erfolgen!

class Person:
 def __init__(self, fname, lname):
 self.firstname = fname
 self.lastname = lname

 def __str__(self):
 return f"{self.firstname} {self.lastname}"

class Student(Person):

 next_available_id = 10000

 def __init__(self, fname, lname):
 super().__init__(fname, lname)
 self.student_id = Student.next_available_id
 Student.next_available_id += 1

 def __str__(self):
 return "Student: " + super().__str__() + f", ID: {self.studen

humboldt = Student("Alexander", "Humboldt")
hegeler = Student("Mary", "Hegeler")

print(humboldt)
print(hegeler)
print("Next available student ID:", Student.next_available_id)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27



Python und C++ mit Blick auf OOP Konzepte

Dog.py

Das Konzept der (Methoden-)Überladung wird in Python nicht nativ unterstützt!

in C++ kann es in einer Klasse mehrere Methoden gleichen Namens geben, sofern sich die Typen
der Parameter unterscheiden

in Python kann es dagegen nur eine Methode mit demselben Namen geben

als Konsequenz werden in Python oft Funktionen mit relativ vielen Parametern definiert







viele oder oft auch alle Parameter haben Default-Werte, oft None

zusätzliche Typannotationen der Parameter verbessern die Lesbarkeit

der Aufruf der Methoden erfolgt dann flexibel über Schlüsselwort-Argumente (d.h. durch
explizite Angabe des Parameternames)







class Dog:
 def __init__(self,
 name:str | None = None,
 age:int | None = None,
 breed:str | None = None):
 self.name = name
 self.age = age
 self.breed = breed

 def __str__(self):
 return f"Dog(Name: {self.name}, Age: {self.age}, Breed: {self
 .breed})"

Creating Dog instances with different combinations of arguments
d1 = Dog(name = "Buddy", age=3, breed = "Golden Retriever")
d2 = Dog(age = 5, name = "Max")
d3 = Dog(name = "Bella", breed = "Beagle")
d4 = Dog()

print(d1, d2, d3, d4, sep="\n")

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19



Dog(Name: Buddy, Age: 3, Breed: Golden Retriever)
Dog(Name: Max, Age: 5, Breed: None)
Dog(Name: Bella, Age: None, Breed: Beagle)
Dog(Name: None, Age: None, Breed: None)
Dog(Name: Buddy, Age: 3, Breed: Golden Retriever)
Dog(Name: Max, Age: 5, Breed: None)
Dog(Name: Bella, Age: None, Breed: Beagle)
Dog(Name: None, Age: None, Breed: None)

NameMangling.py

This is a public method. It may call a private method but this is none
of your business.
This is a private method.
This is a public method. It may call a private method but this is none
of your business.
This is a private method.

OOP Beispiele

Private ist in Python nicht wirklich private

direkter Aufruf privater Methoden über ihren eigentlichen Methodennamen resultiert in einem
Fehler

private Methoden können jedoch mittels "Name Mangling" aufgerufen werden

private Methoden sollte man trotzdem nicht von außerhalb der Klasse aufrufen (schlechter Stil)







class A:
 def fun(self):
 print("This is a public method.",
 "It may call a private method but this is none of your busi
)

 def __fun(self):
 print("This is a private method.")

obj = A()
obj.fun()
obj.__fun() # <- AttributeError
obj._A__fun() # <- Name Mangling "_classname__function"

1
2
3
4

5
6
7
8
9
10
11
12



Nehmen wir an, dass wir eine Liste von Vornamen erzeugen wollen. Dabei soll sichergestellt werden, dass
diese unabhängig von den Eingaben der Bediener vergleichbar sind. Zudem sollen fehlerhafte Eingaben, die
zum Beispiel Zahlen enthalten erkannt und gefiltert werden.

NameList.py

Cannot add Linda2 to name list! Expected a string with alphabetic
characters only.
Cannot add 42 to name list! Expected a string with alphabetic
characters only.
['jannes', 'linda', 'moritz', 'moritz']
['jannes', 'linda', 'moritz']
Cannot add Linda2 to name list! Expected a string with alphabetic
characters only.
Cannot add 42 to name list! Expected a string with alphabetic
characters only.
['jannes', 'linda', 'moritz', 'moritz']
['jannes', 'linda', 'moritz']

Dafür schreiben wir eine abgeleitet Listenklasse mit einer eigenen Implementierung von append() .

class NameList(list):
 def __init__(self):
 super().__init__()

 def append(self, item):
 if isinstance(item, str) and item.isalpha():
 super().append(item.lower())
 else:
 print(f"Cannot add {item} to name list!",
 "Expected a string with alphabetic characters only.")

 def uniques(self):
 # return set(self) # no duplicates, but unordered
 return sorted(set(self)) # no duplicates, ordered

friends = NameList()
friends.append("Jannes")
friends.append("linda")
friends.append("Moritz")
friends.append("MORITZ")
friends.append("Linda2") # name with digit is not allowed
friends.append(42) # wrong data type for name lists

print(friends)
print(friends.uniques())

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25



Aufgabe Erweitern Sie die Implementierung auf die extend() Methode der Listen.

Zum Vergleich mit dem einführenden C++-Beispiel hier noch eine Python-Implementierung der Rectangle-
Klasse in C++. Der += -Operator wird hier mittels der dunder-Methode __iadd__() (in-place addition)
implementiert.

Rectangle.py

Fläche a : 12
Fläche b : 3
Summe : 15.0
Fläche a : 12
Fläche b : 3
Summe : 15.0

Dataclasses
Dataclasses, die es seit Python 3.7 gibt, ermöglichen eine einfache und komfortable Definition von Klassen,
die hauptsächlich der Datenhaltung dienen, aber deren Verhalten (durch Definition von Methoden) weniger
wichtig ist. Sie sind in etwa vergleichbar zu struct s in C++.

class Rectangle:
 def __init__(self, width: float, height: float):
 self.width = abs(width) # ensure non-negative width
 self.height = abs(height)

 def area(self):
 return self.width * self.height

 def __iadd__(self, offset):
 ratio = (offset.area() + self.area()) / self.area()
 self.width = ratio * self.width
 return self

if __name__ == "__main__":
 rect_a = Rectangle(3, 4)
 rect_b = Rectangle(1, 3)
 print(f"Fläche a : {rect_a.area()}")
 print(f"Fläche b : {rect_b.area()}")
 rect_a += rect_b
 print(f"Summe : {rect_a.area()}")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20



Für Dataclasses wird viel "Boilerplate-Code" automatisch generiert, z.B. die Methoden __init__() ,
__eq__() und __repr__() .

Die automatische Code-Generierung erfolgt durch einen Dekorator @dataclass .

Felder von Datenklassen werden über Typannotationen sowie optionalen Default-Werten definiert (man
verwendet den Begriff Feld auch, weil die Felder syntaktisch eher wie Klassenvariablen aussehen, durch den
Dekorator aber zu Instanzvariablen gemacht werden; durch den anderen Begriff wird es weniger verwirrend).

dataclass_example.py

Dog(name='Buddy', age=3, breed='Golden Retriever')
Dog(name='Max', age=5, breed=None)
Dog(name='Bella', age=None, breed='Beagle')
Dog(name='Bella', age=None, breed='Beagle')
Dog(name=None, age=None, breed=None)
Is d3 equal to d4? True
Dog(name='Buddy', age=3, breed='Golden Retriever')
Dog(name='Max', age=5, breed=None)
Dog(name='Bella', age=None, breed='Beagle')
Dog(name='Bella', age=None, breed='Beagle')
Dog(name=None, age=None, breed=None)
Is d3 equal to d4? True

Hinter den Kulissen erzeugt der Dekorator u.a. automatisch einen Konstruktor:

from dataclasses import dataclass

@dataclass
class Dog:
 name: str | None = None # field 'name' with default value None
 age: int | None = None
 breed: str | None = None

d1 = Dog(name = "Buddy", age=3, breed = "Golden Retriever")
d2 = Dog(age = 5, name = "Max")
d3 = Dog(name = "Bella", breed = "Beagle")
d4 = Dog(breed = "Beagle", name = "Bella")
d5 = Dog()

print(d1, d2, d3, d4, d5, sep="\n")
print("Is d3 equal to d4?", d3 == d4) # True, as the field values ar
 same

"Automatically generated __init__ method by @dataclass:"
 def __init__(self,
 name: str | None = None,

i |

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16





Interessant an Dataclasses ist zudem, dass Instanzen entweder als veränderliche (Default) oder
unveränderliche Objekte definiert werden können.

frozen_dataclass.py

{Dog(name='Bella', age=None, breed='Beagle'), Dog(name='Buddy', age=3,
breed='Golden Retriever')}
{Dog(name='Buddy', age=3, breed='Golden Retriever'), Dog(name='Bella',
age=None, breed='Beagle')}

Aufgabe Definieren Sie ein Dictionary, in welchem Instanzen der Dataclass Dog als Schlüssel
verwendet werden. Experimentieren Sie dabei mit den beiden möglichen Werten den Parameter
frozen des Dekorators (False bzw. True).

Quiz

 age: int | None = None,
 breed: str | None = None):
 self.name = name
 self.age = age
 self.breed = breed

Erweitert man den Dekorator um den Parameter frozen=True , dann sind die Instanzen
unveränderlich

Ein Vorteil von unveränderlichen Objekten ist, dass sie Elemente von Sets oder Schlüssel von
Dictionaries sein können.





from dataclasses import dataclass

@dataclass(frozen=True) # default: frozen=False
class Dog:
 name: str | None = None # field 'name' with default value None
 age: int | None = None
 breed: str | None = None

d1 = Dog(name = "Buddy", age=3, breed = "Golden Retriever")
d2 = Dog(name = "Bella", breed = "Beagle")
d3 = Dog(breed = "Beagle", name = "Bella")

dogs = {d1, d2, d3} # d2 and d3 are considered equal
print(dogs)

1
2
3
4
5
6
7
8
9
10
11
12
13
14



Objektorientierung in Python

Für welche der genannten Grundprinzipien der objektorientierten Programmierung treffen folgende
Aussagen zu:

Klassen in Python

Mit welchem Schlüsselwort beginnen Klassendefinitionen in Python?

Wodurch muss [_____] ersetzt werden, um den Nachnamen von Student neuer auszugeben?

class Student:
 lastName = "Neuer"
 firstName = "Markus"
 age = 20

neuer = Student()
print([_____])

Welche konkrete Implementierung der
Methode aufgerufen wird, hängt davon
ab mit welchem konkreten Objekt sie
aufrufen wird.

Objekte schützen ihre Daten und
Methoden sofern diese nicht als
"öffentlich" deklariert sind.

Objekte können ihre Daten und
Methoden an andere, spezielle Objekte
weitergeben.

Kapselung Vererbung Polymorphie



OOP Grundelemente in Python

Wie lauten die Ausgaben foldender Programme?

class Player:
 max_health = 100
 max_experience = 10

 def __init__(self, name, level):
 self.name = name
 self.level = level
 self.health = Player.max_health
 self.experience = Player.max_experience

p1 = Player("Peter", 2)
p2 = Player("Frank", 6)
print(p2.level, p2.experience)

class Player:
 max_health = 100
 max_experience = 10

 def __init__(self, name, level):
 self.name = name
 self.level = level
 self.health = Player.max_health
 self.experience = Player.max_experience

 def level_up(self):
 self.level += 1
 self.health = Player.max_health
 self.experience = 1

p1 = Player("Peter", 2)
p2 = Player("Frank", 6)
p2.level_up()
print(p2.level, p2.experience)





Welche dieser Methoden ist eine dunder Method?

Kapselung

Welche der im folgenden Code aufgeführten Methoden und Variablen sind öffentlich und welche
privat?

Was ist die Ausgabe des oben gezeigten Codes?

__sum__

sum

_sum

sum

class Dog:
 def bark(self):
 print("woof")

 def __bark_loud(self):
 print("WOOF!")

Fifi = Dog()
Fifi.bark_loud()

öffentlich

privat

bark() __bark_loud()



Ist es in Python grundsätzlich möglich auch private Methoden auszuführen?

Wordurch muss [_____] ersetzt werden, um die Ausgabe WOOF! zu erzeugen?

Vererbung

Wodurch muss [_____] ersetzt werden, um eine neue Klasse Auto zu erstellen, die das
Verhalten der Klasse Fahrzeug erbt?

woof

WOOF!

Das Programm wird mit einem Error abgebrochen

Ja

Nein

class Dog:

 def bark(self):
 [_____]

 def __bark_subtle(self):
 print("woof")

 def __bark_loud(self):
 print("WOOF!")

Fifi = Dog()
Fifi.bark()

class Fahrzeug:
 def __init__(self, ps):
 self.ps = ps

class [_____]:
 pass





a1 = Auto(70)

